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Abstract

Shades of Darkness: A Pecking Order of Trading Venues

Investors trade in various types of venues. When demanding immediacy, they trade off price impact

and execution uncertainty. The “pecking order” hypothesis (POH) states that investors rank venues

accordingly, with low-cost-low-immediacy venues on top and high-cost-high-immediacy venues at

the bottom. Hence, midpoint dark pools on top, non-midpoint pools in the middle, and lit markets at

the bottom. When urgency increases, investors tilt their flow from top to bottom. We document such

pattern for U.S. data, confirming POH. A simple model obtains POH in equilibrium and suggests that

the availability of dark pools reduces investor (utility) cost by $1.43 billion annually.
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1 Introduction

A salient trend in global equity markets over the last decade is the explosion of off-exchange, or

“dark” trading venues. In the United States, dark venues now account for about 30% of equity trading

volume (see Figure 1(a) for an illustration of Dow-Jones stocks). In Europe, about 40% of volume

trades off-exchange for leading equity indices (see Figure 1(b)).

Equally salient is the wide fragmentation of trading volume across dark venues. The United

States has more than 30 “dark pools” and more than 200 broker-dealers that execute trades away from

exchanges (see SEC, 2010). Dark pools, which are automated traded systems that allow investor-to-

investor trades, have grown fast in market shares and now account for about 15% of equity trading

volume in the U.S., according to industry estimates.1 In Europe, dark venues also face a high degree

of fragmentation, with at least 10 multilateral dark venues operating actively.2

The fragmentation of trading—between exchanges and dark venues, as well as across dark venues—

is a double-edged sword. It creates a conflict between the efficient interaction among investors and

investors’ demand for a diverse set of trading mechanisms. The SEC (2010, p. 11-12) highlights this

trade-off in its Concept Release on Equity Market Structure:

“Fragmentation can inhibit the interaction of investor orders and thereby impair certain

efficiencies and the best execution of investors’ orders. . . . On the other hand, mandating

the consolidation of order flow in a single venue would create a monopoly and thereby

lose the important benefits of competition among markets. The benefits of such compe-

tition include incentives for trading centers to create new products, provide high quality

trading services that meet the needs of investors, and keep trading fees low.”

These two views of fragmentation neatly correspond to two complementary strands of theories

on fragmented markets. Early theories involving multiple trading venues show that investors are
1 Industry estimates are provided by Tabb Group, a consultancy firm, and Rosenblatt Securities, a bro-

ker. On June 2, 2014, FINRA started publishing weekly statistics of transaction volumes in alternative trad-
ing systems (ATS), with a two-week lag. Many dark pools are registered as ATS. For more details, see
https://www.finra.org/Newsroom/NewsReleases/2014/P519139.

2 See “European Dark Trading Analysis,” Fidessa, October 2013.
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Figure 1: Dark market share in United States and Europe. This figure shows the market shares of dark
trading in the U.S. and in Europe. Panel (a) plots the monthly average dark shares of the 30 stocks in the
Dow Jones Industrial Average from 2006 to October 2014. We use the stocks that are in the Dow index as
of November 2014. Volume data are obtained from Bloomberg and TAQ. Dark trades are defined by those
reported to FINRA (code “D” in TAQ definition). From May 2006 to February 2007 the estimates are missing
because (i) TAQ data mixes trades reported to FINRA with some NASDAQ trades, and (ii) Bloomberg data
do not cover this period. Panel (b) plots the averages of dark shares of FTSE100, CAC40, and DAX30 index
stocks. These estimates are directly obtained from Fidessa.
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attracted to venues where other investors are trading (see, for example, Pagano, 1989; and Chowdhry

and Nanda, 1991). This “liquidity-begets-liquidity” insight suggests that fragmentation reduces the

efficiency of trading among investors. Applied to today’s equity markets, this argument further implies

that fragmentation of dark venues, which provide little or no pre-trade transparency, causes a particular

concern because investors cannot observe the presence of counterparties ex ante and must engage in

costly search in multiple dark venues.

In contrast, recent theories of dark pools show that precisely because of their pre-trade opacity

and the associated execution uncertainty, dark venues attract a different type of investors from those

on the exchanges (Hendershott and Mendelson, 2000; Degryse, Van Achter, and Wuyts, 2009; Buti,

Rindi, and Werner, 2014, Ye, 2011; Zhu, 2014; Brolley, 2014). Under this “venue heterogeneity” or

“separating equilibrium” view, fragmentation can be an equilibrium response to the heterogeneity of
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Figure 2: Pecking order hypothesis. This figure depicts the pecking order hypothesis. Panel (a) shows the
generic form. Panel (b) shows the specific form. Midpoint crossing dark pools (DarkMid) are on top. Non-
midpoint dark pools (DarkNMid) are in the middle. Lit market (Lit) are at the bottom. Detailed descriptions of
various dark pool types are collated in Section 3.1.
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investors and time-varying market conditions.

Pecking order hypothesis

This paper characterizes the dynamic fragmentation of U.S. equity markets. We propose and test a

“pecking order hypothesis” for the fragmentation of trading volumes, in line with the second view

in the SEC remark. We hypothesize that investors “sort” dark and lit venues by the associated costs

(price impact, information leakage) and immediacy, in the form of a “pecking order.”3 The top of

the pecking order consists of venues with the lowest cost and lowest immediacy, and the bottom

of the pecking order consists of venues with the highest cost and highest immediacy. The pecking

order hypothesis predicts that, on average, investors prefer searching for liquidity in low-cost, low-

immediacy venues but will move towards higher-cost, higher-immediacy venues if their trading needs

become more urgent. This intuitive sorting is illustrated in Figure 2(a).

3 We choose “immediacy” here as we believe it is the appropriate interpretation of liquidity in the context of securities
trading (Grossman and Miller, 1988).
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More concretely, recent theories of dark pools mentioned above predict that dark venues are at the

top of the pecking order, whereas lit venues are at the bottom, because of their difference in execution

probabilities. In addition, through a simple stylized model, we rank two important categories of dark

pools—midpoint dark pools (“DarkMid”) and non-midpoint dark pools (“DarkNMid”)—according

to investors’ cost and immediacy considerations. The specific ordering of the three venue types

is illustrated in Figure 2(b). This sorting combines—in an intuitive description of the underlying

theory—“exchanges are liquidity of last resort” and “not all dark pools are created equal.”

We test the pecking order hypothesis by exploiting a unique dataset on dark trading in U.S. eq-

uity markets. Our dataset disaggregates dark transactions into five categories by trading mechanism,

including the two types of dark pools shown in Figure 2(b). The other three categories of dark transac-

tions are internalized trades with retail brokers, average-price trades, and other (mostly institutional)

trades. (The detailed descriptions are provided in Section 3.) To the best of our knowledge, this

dataset provides the most comprehensive and granular view of U.S. dark trading that is accessible by

academics.

We estimate a panel vector-autoregressive model with exogenous variables (VARX) to character-

ize the dynamic interrelation among dark volumes, high-frequency trading activity in lit venues, and

various market condition measures. The focus of our empirical strategy is on two exogenous variables,

VIX and earnings surprise, which we use as proxies for shocks to investors’ demand for immediacy,

due to aggregate volatility and firm-specific news, respectively. The pecking order hypothesis pre-

dicts that, following an upward shock to VIX or earnings surprise, trading volumes should migrate

from low-cost low-immediacy venues to high-cost high-immediacy venues; therefore, the change in

volume share of a venue should become progressively larger the further out it is in the pecking order.

The data support the pecking order hypothesis. Following a 100% upward shock to VIX, dark

pools that cross orders at the midpoint lose 52% of their market share (from 2.3% to 1.2%), dark

pools that allow some price flexibility lose 30% of their market share (from 7.1% to 5.0%), and

lit venues gain 16% of their market share (from 77.5% to 90.0%). The same qualitative pattern is
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observed following an earnings-surprise shock.

We also develop a simple, parsimonious model to formally examine the pecking order hypothe-

sis. The model serves two main purposes. First, it provides a “minimalism” framework under which

investors strategically split their order flows across a variety of trading venues—including a lit ex-

change and multiple heterogeneous dark pools. The pecking order hypothesis arises from our model

as an equilibrium outcome. Second, the model offers a natural setting to compare social welfare under

different market structures: trading with or without dark venues. Guided by the model, we estimate

that the existence of midpoint dark pools and non-midpoint dark pools achieves a cost saving of about

$1.43 billion per year in the U.S. equity market. To put this dollar amount into perspective, $1.43

billion is about 7.4% of the annual value added by U.S. mutual funds (gross of fees) estimated by

Berk and van Binsbergen (2014). In sum, market structure matters and has a meaningful impact on

investor welfare.

At this point it is important to make a few cautionary remarks on the interpretation of our re-

sults. First, our simple model abstracts from information asymmetry. With information asymmetry,

price discovery and exchange liquidity will be affected by the presence of dark venues, which has

ambiguous additional welfare implications (see Zhu 2014). Second, while our results suggest that

the fragmentation among dark venue types can be an equilibrium response to investor heterogene-

ity and time-varying market conditions, our analysis is silent on the fragmentation within each dark

venue type. The latter question requires more detailed data on venue identities, not only venue types.

Third, the pecking order hypothesis implicitly assumes that at least some investors make rational

venue choices based on correct information of how these venues operate. This point is important in

light of recent cases about alleged fraud by a couple of dark pools for misrepresenting information

to investors.4 Fourth, our analysis ignores the fact that investors can place “hidden” orders in Lit.

It is, however, hard to completely hide orders on lit venues as these orders are frequently detected

4 For example, on June 25, 2014, Eric Schneiderman, Attorney General of the State of New York, alleges that Bar-
clays has falsified marketing material and misrepresented information to clients about the presence of high-frequency
traders in its dark pool. In October 2011, SEC finds that Pipeline, a dark-pool operator that claimed to only al-
low buyside firms to participate, had filled the majority of customer orders through its own trading affiliate (see
www.sec.gov/news/press/2011/2011-220.htm).
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(de Winne and D’Hondt, 2007). These caveats are likely to garble the pecking order hypothesis and

its welfare implications.

The primary contribution of this paper to the literature consists of three parts: (i) we characterize

the dynamic fragmentation of dark and lit venues, (ii) we offer a “pecking order” explanation of the

observed market-share pattern as an equilibrium outcome of a simple and parsimonious model, and

(iii) based on the model, we quantify the welfare implications of market fragmentation.

Our result that adding dark venues improves welfare for investors is consistent with Degryse,

Van Achter, and Wuyts (2009), who model the competition between a dealers market and a cross-

ing network (equivalent to the midpoint dark pool in our model). They find that adding a crossing

network improves welfare for investors; but if dealers’ profits are included, then the welfare effect is

ambiguous. Buti, Rindi, and Werner (2014) model the competition between a limit order book and

a midpoint dark pool. They find numerically that adding the dark pool harms small traders’ welfare

but may harm or improve large traders’ welfare. A main feature of their model is that there are no

specialized liquidity providers who post sufficiently good quotes on the limit order book, so attractive

quotes must be provided by the traders. This modeling feature helps explain why the welfare result

of Buti, Rindi, and Werner (2014) differ from those of Degryse, Van Achter, and Wuyts (2009) and

ours. Neither of these two theory papers calibrate to the data.

Prior empirical studies of fragmentation and dark venues typically focus on standard measures

of “market quality,” such as spread, depth, and volatility. They do not make welfare statements or

estimates. In addition, they are based on either aggregate off-exchange trades or trades in a few

selected dark pools. Studies based on aggregate trades include O’Hara and Ye (2011) and Hatheway,

Kwan, and Zheng (2013) (U.S. data), Degryse, de Jong, and van Kervel (2014) (Dutch data), and

Comerton-Forde and Putniņš (2013) (Australian data), among others. Studies based on trades in a

few dark pools include Hendershott and Jones (2005) (Island ECN), Ready (2014) (Liquidnet and

POSIT), Buti, Rindi, and Werner (2011) (11 anonymous dark pools), Boni, Brown, and Leach (2012)

(Liquidnet), Nimalendran and Ray (2014) (one anonymous dark pool), Foley, Malinova, and Park
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(2013) (dark order types on Toronto Stock Exchange), and Foley and Putniņš (2014) (four dark venues

in Canada), among others.

Kwan, Masulis, and McInish (2014) use a similar dataset from NASDAQ. They study how the

minimum tick size affects the competitiveness of exchanges relative to dark venues, which is a very

different research question from ours. SEC (2013) provides a comprehensive review of the recent

empirical literature on fragmentation.

Venue pecking order and high-frequency trading

One commonly cited reason for the increase in dark volume is that investors “fear” high-frequency

traders (HFTs) in lit markets.5 HFTs are proprietary traders who use “extraordinarily high-speed and

sophisticated computer programs for generating, routing, and executing orders” (SEC 2010). Some

investors and regulators are concerned that HFT may engage in “front-running” or “predatory trading.”

In the context of the pecking order hypothesis, the perceived risk of interacting with HFTs is one form

of cost for trading in lit venues.

Motivated by these concerns, we are interested in the extent to which HFT activity affects in-

vestors’ order flow along the venue pecking order. Without an exogenous shock to HFT activity, we

attempt a preliminary, partial answer by studying the responses of HFT activity to VIX and earnings

shocks. Specifically, if HFT activity declines after the VIX and earnings shocks, this decline would

be at least “consistent with” the conjecture that investors trade more in lit venues because they face a

lower risk of interacting with HFTs. If the data show the opposite, this conjecture is a lot less likely.

Empirically, we find that HFT quoting and trading activities both increase significantly in large

stocks following an upward shock to VIX. The changes in HFT activity after earnings shocks are

statistically insignificant. This result suggests that investor order flow migrates to lit venues under a

higher aggregate volatility not because HFTs scale back in activity. Instead, it suggests that investors’

fear for interacting with HFT, if any, is dominated by their demand for immediacy in high volatility

situations.
5 See, for example, “As market heats up, trading slips into shadows,” New York Times, March 31, 2013.
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Our finding that a high HFT activity is associated with a high exogenous volatility contributes to

an emerging literature on HFT and volatility. Brogaard, Hendershott, and Riordan (2014) document

that HFTs participate more on high volatility days and generally trade in the direction of public news

(e.g., macro news, market returns, or order book imbalances). Jovanovic and Menkveld (2011) show

that HFTs participate more on days when a stock’s volatility largely reflects market-wide volatility

(i.e., low idiosyncratic volatility). Our evidence is consistent with theirs. Existing evidence on the

relation between HFT activity and the size of endogenous (short-term) pricing errors is mixed. For

example, Boehmer, Fong, and Wu (2014), Egginton, Ness, and Ness (2013), and Hasbrouck (2013)

suggest a positive relation, whereas Brogaard, Hendershott, and Riordan (2014) and Hagströmer and

Nordén (2013) suggest the opposite.

2 A Pecking Order Hypothesis of Trading Venues

In this section we further motivate the pecking order hypothesis in its specific form (Figure 2(b)).

It is this specific-form hypothesis that will be the main hypothesis discussed and tested throughout

the remainder of the paper. First, we discuss how various dark pool papers could be interpreted as

suggestive of the predicted ordering in venues. Second, we develop an empirical strategy to test the

hypothesis.

2.1 The pecking order hypothesis in its specific form

Panel (b) of Figure 2 illustrates the specific form of the pecking order hypothesis: dark pools that

cross orders at the midpoint of NBBO (labeled “DarkMid”) are on the top of the pecking order, dark

pools that allow some price flexibility (labeled “DarkNMid”) are in the middle, and transparent venues

(labeled “Lit”) are at the bottom.

DarkNMid is a “lighter shade of dark,” sitting between DarkMid and Lit. In DarkNMid an order

imbalance can move the price so that the dark pool operator can create more matched volume and
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the trade-through restriction guarantees that investors still get a price improvement relative to Lit. In

other words, in DarkNMid execution is more likely than in DarkMid, but earning the full half-spread

is less likely. If an investor moves from DarkNMid to Lit, execution becomes guaranteed but he loses

the ability to earn any of the spread at all. In Section 6 we propose a simple candidate model that

characterizes the competition among the three types of venues: DarkMid, DarkNMid and Lit. The

model and its analysis formalize the intuition underpinning the pecking order hypothesis of trading

venues.

The specific form of the pecking order hypothesis is richer than existing theories of dark pools.

For example, models of Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts (2009),

Buti, Rindi, and Werner (2014), Ye (2011), and Zhu (2014) all have the feature that midpoint dark

pools provides potential price improvement relative to exchange prices, but they do not guarantee the

execution of investors’ orders. In all these models, investors have access to all venues and actively

choose the best type of venue that serves their speculative or hedging needs.6 While these models

predict that dark venues are near the top of the pecking order and lit venues near the bottom, they do

not distinguish different types of dark pools.

There is an alternative motivation for the pecking order hypothesis, based on an agency conflict

between investors and their brokers. Its starting point is that brokers decide where to route investors’

orders, and investors monitor brokers insufficiently. If brokers earn more profits by routing investors’

orders first to their own dark pools, then orders would first flow into broker-operated dark pools and

then to other dark and lit venues. Only when investors tell brokers to execute quickly will they have

no choice but to send it to lit venues. This alternative motivation is less rich as it does not suggest a

particular ranking of dark venue types. It simply states that dark venues take priority, whatever type

of dark venue the broker is running, except when investors emphasize quick execution.

6 Yet another motivation for trading in dark venues is suggested by Boulatov and George (2013). They show that if
liquidity providers are informed, displaying their orders reduces their information rents and discourages informed traders
from providing liquidity. As a result, an opaque, or dark, market can have a narrower bid-ask spread and more efficient
prices than a transparent one. Different from the dark pool studies, however, the model of Boulatov and George (2013)
has only one market at a time and does not make predictions regarding the fragmentation of dark and lit venues.
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2.2 Empirical strategy for testing the pecking order hypothesis

Because venues are sorted by the trade-off between immediacy and trading cost, an upward shock to

investors’ urgency to trade should predict a loss of market share by venues at the top of the pecking

order and a gain of market share by venues at the bottom. Testing the pecking order hypothesis re-

quires (i) disaggregated data on dark volumes and (ii) an exogenous shock to demands for immediacy

and an econometric model.

Section 3 discusses the high-frequency disaggregated dark volume data available to us. Our em-

pirical strategy is to use the high-frequency nature of the data to identify the dynamic interrelation

among dark volumes in the various categories. We use two types of exogenous shocks as instruments

for urgency: shocks to VIX and shocks to earnings.

We first study trade response to a market-wide volatility shock implemented through a doubling

of VIX. Because VIX is calculated from prices of short-dated (within one month maturity) S&P 500

index options, we are reasonably confident that fragmentation of order flows is unlikely to change

VIX. Rather, VIX is driven mostly by systematic risks and the time-varying risk premium in the

aggregate U.S. equity market, both of which can increase the effective cost of holding an undesirable

inventory.

Next, we study trade response to an idiosyncratic shock to firms’ fundamental values, measured by

earnings surprises on announcement dates relative to pre-announcement expectations. Since earnings

announcements are scheduled in advance and are made outside trading hours, they are not affected by

trading activities. Trades naturally happen given the new information from the announcements. For

example, investors may wish to liquidate speculative or hedging positions established before earnings

announcements. The larger is the magnitude of an earnings surprise (positive or negative), the more

quickly losses accumulate for investors who “made the wrong bet,” and the more urgently they want

to close out these losing positions (e.g., due to margin constrain). Trades can also be generated when

investors interpret the same earnings news differently (Kim and Verrecchia, 1994). The larger the

earnings surprise, the more immediacy we expect investors to demand to adjust their positions in the
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stock.

The next two sections discuss the data and the econometric approach in full detail. Section 5

discusses the test results.

3 Data

Our data sample covers 117 stocks in October 2010 (21 business days). It consists of large-cap,

medium-cap, and small-cap stocks in almost equal proportions.7 In addition to TAQ trading volumes

and National Best Bid and Offer, we use two main proprietary data sources: (1) transactions in five

types of dark venues, (2) HFT activity in the NASDAQ main market. We complement these trading

data with intraday VIX and earnings announcements by firms in our sample. These data sources are

described below in detail.

3.1 Dark volumes

In the United States, off-exchange transactions in all dark venues are reported to trade-reporting fa-

cilities (TRFs). The exact venue in which the dark trade takes place is not reported in public data.

(Recently, FINRA started to publish weekly transaction volumes in alternative trading systems, but

these volumes are aggregated and not on a trade-by-trade basis.8) The NASDAQ TRF is the largest

TRF, accounting for about 92% of all off-exchange volumes in our sample. Our first data source

is the dark transactions reported to NASDAQ TRF. These trades are executed with limited pre-trade

transparency.9 A salient feature of our data is that the dark transactions are disaggregated into five cat-

7 This sample of stocks is the same as that in the NASDAQ HFT dataset used by many studies of HFT. The origin
sample compiled by NASDAQ contains 120 stocks, with 40 stocks in each size category. But only 117 of the 120 stocks
are present in our sample period. Brogaard, Hendershott, and Riordan (2014) state that “The top 40 stocks are composed
of 40 of the largest market capitalization stocks. . . The medium-size category consists of stocks around the 1000th largest
stocks in the Russell 3000. . . , and the small-size sample category contains stocks around the 2000th largest stock in the
Russell 3000.”

8 See https://www.finra.org/Newsroom/NewsReleases/2014/P519139.
9 Our dark transaction data do not include trades on electronic communication networks (ECNs). ECNs are transpar-

ent venues that register as alternative trading systems (ATS), but they are not exchanges for regulatory purposes. In our
sample, ECNs account for a very small fraction of total transaction volume. BATS and DirectEdge, two major exchanges
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egories by trading mechanism. The exact method of such disaggregation is proprietary to NASDAQ,

but we know their generic features. The five categories include:

1. DarkMid. These trades are done in dark pools that use midpoint crossing as much as possible.

Midpoint crossing means the buyer and the seller in the dark venue transact at the midpoint

of the National Best Bid and Offer (NBBO). “Agency-only” dark pools (i.e. those with no

proprietary order flows) typically operate this way.10

2. DarkNMid. These trades are done in dark pools that allow flexibility in execution prices (not

necessarily midpoint). By this features, we infer that dark pools operated by major investment

banks belong to this category.

3. DarkRetail. These trades are internalized volume by broker-dealers. Retail brokers often route

order flows submitted by retail investors to major broker-dealers, who then fill these orders as

principal or agent. These transactions would be classified as DarkRetail.

4. DarkPrintB. These trades are “average-price” trades. A typical example is that an institutional

investor agrees to buy 20,000 shares from a broker, at a volume-weighted average price plus a

spread. This trade of 20,000 shares between the investor and the broker would be classified as

a “print back” trade, abbreviated as “PrintB.”

5. DarkOther. These are other dark trades not covered by the categories above. A typical

example in this category would be a negotiated trade between two institutions on the phone

(i.e., not done on any electronic platform).

We emphasize that each category is not a single trading venue, but a collection of venues that are

qualitatively similar in terms of their trading mechanisms. In the interest of brevity, however, we will

use the terms “venue” and “type of venue” interchangeably.

that recently merged, used to be ECNs, but they have converted to full exchange status in November 2008 and July 2010,
respectively.

10 The NASDAQ classification puts a couple of midpoint-crossing dark pools that have large transaction sizes into
“DarkOther” rather than “DarkMid,” in order to guarantee that one cannot reverse-engineer the identities of these venues.
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Figure 3: Volume shares of dark venues and aggregate lit venue. This chart illustrates the average volume
share of the various types of dark pools in the data sample.

Lit (72.8%)

DarkOther (5.8%)

DarkPrintB (0.9%)

DarkRetail (10.8%)DarkNMid (7.7%)

DarkMid (2.1%)

Figure 3 shows the market shares of the five types of dark venues as a fraction of total trading

volume (obtained from TAQ) in our sample. We label the complement of these five dark venues as

the “lit” venues. The “lit” label is an approximation, but it is a good one.11 We observe that dark

venues account for 27.2% of total transaction volume in the 117 stocks in October 2010. Ranked by

market shares, the five dark categories are DarkRetail (10.8%), DarkNMid (7.7%), DarkOther (5.8%),

DarkMid (2.1%), and DarkPrintB (0.9%).

It is informative to compare our five-way categorization of dark trading venues to that of the SEC.

SEC (2010) classifies opaque trading centers into dark pools and broker-dealer internalization. If an

approximate correspondence is to be made, our DarkMid and DarkNMid types roughly fall into the

SEC’s dark pool category, and our DarkRetail, DarkPrintB, and DarkOther types roughly fall into the

SEC’s broker-dealer internalization category.

Using one week of FINRA audit trail data in 2012, Tuttle (2014) reports that about 12.0% of

trading volumes in U.S. equities are executed in off-exchange alternative trading systems (ATS), the

11 Since NASDAQ TRF accounts for 92% of all off-exchange trading volumes in our sample, the “lit” category also
contains the remaining 8% of off-exchange volumes, or about 2.4% of total volumes. For our purchase of characterizing
the qualitative nature of venue types, this measurement noise is likely inconsequential.
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majority of which are dark pools; and that about 18.8% of U.S. equity volume are executed off ex-

changes without involving ATS, which can be viewed as a proxy for trades intermediated by broker-

dealers. The dark-pool volumes and internalized volumes implied by our dataset are comparable to

those reported by Tuttle (2014).

3.2 High-frequency trading and quoting activity in NASDAQ market

Our second data source contains the trading and quoting activities of high-frequency trading firms in

the NASDAQ market. These firms are known to employ high-speed computerized trading, but their

identities and their strategies are unknown to us. This dataset has two parts.

First, for each transaction on NASDAQ, we observe the stock ticker, transaction price, number of

shares traded, an indicator of whether the buyer or the seller is the active side, and an indicator on

whether either side of the trade is an HFT firm. We refer to a trade as an HFT trade if at least one side

of the trade is an HFT firm. All transactions are time-stamped to milliseconds. Second, we observe

the minute-by-minute snapshot of the NASDAQ limit order book. For each limit order, we observe

the ticker, quantity, price, direction (buy or sell), a flag on whether the order is displayed or hidden,

and a flag on whether or not the order is submitted by a high-frequency trading firm.

An important and well-recognized caveat of the NASDAQ HFT dataset is that it excludes trades by

HFT firms that are routed through large, integrated brokers. Nor does the dataset distinguish various

HFT strategies, be it market making or “front-running.” Given this caveat, a prudent way to interpret

the HFT measures is that they are “control variables,” needed to capture market conditions. For

additional details about the NASDAQ HFT dataset, see Brogaard, Hendershott, and Riordan (2014).

3.3 VIX and earnings announcements

The last components of our data include two measures of shocks: VIX and earnings announcements.

The Chicago Board of Exchange (CBOE) disseminates VIX every 15 seconds. Minute-by-minute

VIX data are obtained from pitrading.com. Among the 117 firms in our sample, 68 firms announced

14



Figure 4: Time series of dark volume share and VIX. This chart illustrates the average volume share of
the five types of dark venues combined (shaded area, left axis) and VIX (solid line, right axis). All series are
aggregated at the daily level and averaged across all stocks.
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earnings in October 2010. For each of these earnings announcements, we download the announcement

dates, time stamps, announced earnings per share, and expected earnings per share from Bloomberg.

(We are able to collect EPS forecast from Bloomberg for 67 of the firms, and hence can construct the

EpsSurprise variable defined below.)

Figure 4 shows the time series of the volume shares of the five types of dark venues and VIX. They

are aggregated at the daily level and averaged across the 117 stocks. One interesting observation is

that in the time series, a higher VIX is associated with a lower dark market share. In the next few

sections we will further explore VIX shocks at a higher frequency to test the pecking order hypothesis.

4 A VARX Model of Dark Volumes

In this section, we characterize the dynamic interrelation among dark volumes, HFT participation,

and various standard trade variables through a panel vector autoregressive model with exogenous

variables (a panel VARX).
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4.1 Model components

From the raw data we calculate three broad types of variables for our analysis: (1) transaction volumes

in five types of dark venues, (2) characteristics of the NASDAQ lit market, and (3) overall market

conditions. We describe these components below. For ease of reference, these variables and their

descriptions are tabulated in Table 1. All variables are constructed from the raw data at the minute

frequency during the normal trading hours (9:30am to 4:00pm). This gives us a stock-minute panel

data with 117 × 21 × 390 = 958, 230 observations.

Table 1: Variable descriptions. This table lists and describes all variables used in this study. All variables
are generated for one-minute intervals. Variables that enter the econometric model (Section 4) are underscored.
The subscript j indexes stocks; t indexes minutes. Type “Y” and “Z” are described in the panel VARX model.

Type Variable Name Description

Panel A: Dark venue trading volumes

Y VDarkMidjt Volume of midpoint-cross dark pools
VDarkNMidjt Volume of non-midpoint dark pools
VDarkRetailjt Volume of retail flow internalization
VDarkPrintBjt Volume of average-price trades (“print back”)
VDarkOtherjt Volume of other dark venues

VLitjt Total volume minus all dark volume

Panel B: NASDAQ lit market characterization

BASpreadjt NASDAQ lit market bid-ask spread divided by the NBBO midpoint
TopDepthjt Sum of NASDAQ visible best bid depth and best ask depth
HFTinTopDepthjt Depthjt based on only HFT limit orders divided by Depthjt

HFTinVolumejt NASDAQ lit volume in which HFT participates divided by total NASDAQ lit volume

Panel C: Overall market conditions

TAQVolumejt TAQ volume
RealVarjt Realized variance, i.e., sum of one-second squared NBBO midquote returns
VarRat10Sjt Variance ratio, i.e., ratio of realized variance based on ten-second returns relative to re-

alized variance based on one-second returns (defined to be one for a minute with only
one-second returns that equal zero)

Z VIXt One-month volatility of S&P500 index (in annualized percentage points)
EpsSurprisejt Surprises in announced EPS, calculated as the absolute difference in an-

nounced EPS and the forecast EPS, scaled in share price: |announced EPS −
forecast EPS|/(closing price on the day before). This variable is zero if a stock-day
pair does not have a earnings announcement.
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Dark volumes. We separately calculate trading volumes across the five types of dark venues: VDark-

Mid, VDarkNMid, VDarkRetail, VDarkPrintB, and VDarkOther. Volume is measured in thousands

of shares, which we prefer over dollar value as it ensures that quantity variables are not contaminated

by price effects. For example, two consecutive 1000 share transactions are considered to be of equal

size, even though they may be executed at slightly different prices.

Characteristics of the NASDAQ lit market. We use two commonly-used measures of liquidity:

spread and depth. BASpread is the relative bid-ask spread of the NASDAQ lit market, measured in

basis points. TopDepth is the sum of visible liquidity supply on the bid side and the ask side of the

NASDAQ limit order book, measured in thousands of shares. The motivation for using the number

of shares (rather than market value) to measure depth is the same as that for transaction volumes, as

discussed earlier.

In addition, we use two measures of HFT activity: HFTinVolume and HFTinTopDepth. HFTin-

Volume is the number of shares traded by HFT (on at least one side) on the NASDAQ market divided

by the number of shares traded on the NASDAQ market.12 HFTinTopDepth is the number of shares

posted (quoted) by HFT on the top of the NASDAQ limit order book divided by the total depth on the

top of the NASDAQ limit order book.

Overall market conditions. We add endogenous and exogenous variables describing the overall

market conditions. For each stock and each minute, the endogenous variables are total transaction

volume TAQVolume, realized return variance within the minute RealVar, and the variance ratio within

the minute VarRat10S. The first variable is based on TAQ data, whereas the other two are based on

millisecond-level NBBO data provided by NASDAQ.

Two exogenous variables are included: the one-month volatility on the S&P 500 index, VIX, and

earnings surprise, EpsSurprise. VIX is based on option market prices and therefore is a forward-

12 The stock-day-minute average of HFTinVolume is around 40% in our sample period (see table 2). If HFT volumes
are first aggregated across days and stocks, then the total HFT volume accounts for about 45% of the total NASDAQ
volume in our sample.
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looking volatility measure.

There are 68 earnings announcements, 67 of which can be matched with a forecast, in our sample.

Consistent with the accounting literature (e.g. Kinney, Burgsthler, and Martin, 2002), the earnings sur-

prise is calculated as the absolute difference between announced EPS and pre-announcement expected

EPS, then divided by the closing price on the business day immediately before the announcement. If

stock j announced its earnings on a particular day, we set the variable EpsSurprise jt to this surprise

measure for stock j and all minutes t in the business day immediately following the earnings an-

nouncement.13 Otherwise, EpsSurprise jt is set to zero. This variable captures the presence of material

news for the firm’s fundamental as well as the magnitude of the surprise. Earnings announcements are

typically scheduled months or years ahead by company management; therefore, they are exogenous.

4.2 Data preparation and summary statistics

We convert all variables into logs, except the earnings surprise. A log-linear model has a couple of

advantages over a linear model. First, a log-linear model comes with a natural interpretation that esti-

mated coefficients are elasticities. Second, all endogenous variables (e.g., volume, realized variance,

and depth) are guaranteed to remain nonnegative. In other words, the error term does not need to be

bounded from below, which would be the case for a linear model.

In order to take the log, data need to be winsorized to eliminate the zeros. We use the following

procedure. If a particular dark venue has a zero transaction volume for stock j and minute t, its

volume for that stock-minute is reset to one share. If a particular stock j does not trade in period

t on the NASDAQ market, the HFTinVolume variable is undefined. In this case, to not lose data,

HFTinVolume is forward filled from the start of the day. The motivation is that market participants

may learn HFT activity on NASDAQ by carefully parsing market conditions. If there is no update in

a particular time interval, they might rely on the last observed value they learned about. Zero entries

13 That is, if the earnings announcement is made before the market opens (9:30am), the immediate following business
day is the same business day. If the earnings announcement is made after the market closes (4pm), the immediate following
business day is the next business day.
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for all other variables are left-winsorized at the 0.01% level.

Table 2 reports the summary statistics of the model variables, before taking the log. One important

observation is that the data preparation procedure discussed above has a minimum effect on the raw

data. Total trading volume per stock-minute is about 12,300 shares on average. The market shares

of the five types of dark venues are shown in Figure 3. (For completeness, we also include VLit,

defined as TAQVolume less the sum of the five dark volumes, although VLit will not be part of the

panel VARX model.) On average, HFT participation in quoting at the best NASDAQ prices, HFT-

inTopDepth, is about 35%, whereas HFT participation in transactions on NASDAQ, HFTinVolume,

is about 40%. The average depth and relative spread on NASDAQ limit order book are about 4440

shares and 16.8 basis points, respectively. VIX in our sample has an average of 20.6%. The earnings

surprises measure, EpsSurprise, has an average of about 47 basis points across the 68 firms that made

earnings announcements in our sample.14

4.3 Panel VARX model

The panel VARX model used for the main empirical analysis has the following form:

yjt = α j + Φ1yj,t-1 + · · · + Φpyj,t-p + Ψ1zj,t-1 + · · · + Ψrzj,t-r + εjt, (1)

where, for stock j and period t:

yjt is a vector of log-transformed endogenous variables. Our baseline model includes the following

variables, with detailed explained in Table 1:

– Volumes in the five types of dark venues;

– Other endogenous variables that characterize trade conditions (e.g., volatility, the bid-ask

spread, etc.).

14 The statistics of EpsSurprise reported in Table 2 are across all 117 × 21 × 360 stock-day-minutes. It should be re-
minded that there are only 67 EpsSurprises during our sample period. The sample average based on these 67 observations
is about 0.15% and the sample standard deviation is 0.89%. Based on these numbers, we give a 1% EpsSurprise shock in
the pecking order analysis below (see Figure 6).
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Table 2: Summary statistics. This table reports summary statistics of the variables used throughout the paper. These statistics are calculated for
the raw data as well as the prepared data, before taking the logarithm. The sample frequency is minute. The units of each series is in the square
brackets.

mean std. dev. skewness min max zeros count

raw prep/d raw prep/d raw prep/d raw prep/d raw prep/d raw prep/d raw prep/d

VDarkMid [1k shares] 0.259 0.259 3.161 3.161 377.994 378.016 0 0.001 2032.340 2032.340 737273 0 954892 954892

VDarkNMid [1k shares] 0.941 0.941 5.437 5.437 54.600 54.602 0 0.001 1040.352 1040.352 574616 0 954892 954892

VDarkRetail [1k shares] 1.329 1.330 6.197 6.196 34.609 34.611 0 0.001 1641.229 1641.229 592060 0 954892 954892

VDarkPrintB [1k shares] 0.106 0.107 8.040 8.040 269.541 269.542 0 0.001 3524.920 3524.920 924829 0 954892 954892

VDarkOther [1k shares] 0.709 0.709 10.798 10.798 104.222 104.223 0 0.001 3018.263 3018.263 690408 0 954892 954892

VDark [1k shares] 3.437 3.438 41.120 41.120 414.272 414.273 0 0.001 23616.586 23616.586 440491 0 958230 958230

VLit [1k shares] 8.932 8.932 45.397 45.397 60.567 60.568 0 0.001 11892.866 11892.866 233599 0 958230 958230

RelSpread [bps] 16.776 16.776 28.466 28.466 37.114 37.114 0.162 0.334 6681.449 6681.449 0 0 957769 957769

TopDepth [1k shares] 4.443 4.443 13.909 13.909 6.058 6.058 0 0.004 502.515 502.515 9 0 958230 958230

HFTinTopDepth [percent] 35.199 35.225 29.512 29.480 0.384 0.386 0 0.105 100 100 244386 0 958221 958230

TAQVolume [1k shares] 12.264 12.268 55.722 55.722 40.816 40.817 0 0.001 12196.768 12196.769 208687 0 958230 958230

HFTinVlm[percent] 39.985 37.157 23.939 26.038 0.053 0.166 0 0.125 100 100 72830 0 583561 955059

RealVar [bps] 6.139 6.188 9.112 9.079 14.518 14.668 0 0.172 1367.197 1367.197 274466 0 958218 958218

VarRat10S [percent] 99.772 99.778 44.438 44.426 1.142 1.144 0 0.317 853.407 853.407 16561 0 958218 958218

VIX [percent] 20.626 20.626 1.369 1.369 0.656 0.656 17.940 17.940 24.330 24.330 0 0 954603 954603

EpsSurprise [percent] 0.013 0.013 0.150 0.150 18.871 18.871 0 0 4.190 4.190 931710 931710 957840 957840
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zjt is a vector of arguably exogenous variables, including the log transformations of VIXjt and the

raw (not logged) earnings surprise measure EpsSurprisejt.

A stock fixed effect α j ensures that only time variation is captured, not cross-sectional variation, as

our focus is on dynamic interrelations among variables. The number of lags (in minutes) is deter-

mined based on the Bayesian Information Criterion (BIC): p = 2 and r = 1. Further details on the

implementation of the estimation are provided in Appendix A.

4.4 Estimation results

Table 3 reports the estimation results of the VARX model. Panel (a) reports the estimated coefficients

{Φ1,Φ2,Ψ1}, which should be interpreted as elasticities, and Panel (b) reports the correlations of the

residuals. We make a few observations. First, a higher VIX or a higher earnings surprise forecasts

higher volumes in dark venues and total TAQ volume, but the elasticity of TAQ volume is higher

than that of dark volumes. This suggests that the market shares of various venue types are likely to

have heterogeneous reactions to VIX and earnings shocks. Second, a higher HFT participation in

this minute tends to forecast a mildly lower volumes in all venues in the next minute. Third, dark

volumes in different types of venues have heterogeneous dynamic correlations with spreads, depths,

and variance ratios, sometimes with opposite signs (see the first five lines of Panel (a)).

In addition to the parameter estimates, we also calculate and plot standard impulse-response func-

tions (IRFs) of endogenous variables to shocks. With few exceptions, we set the magnitudes of the

initial shocks such that the shocked variable doubles in its level (i.e. shock the logged variable by

log(2)). For a generic upward shock to some variable in y or z, the IRF essentially identifies two types

of elasticities:

• an immediate one-period response of some variable in y, and

• a cumulative long-term response of some variable in y.

IRFs make the dynamic interrelations among variables transparent. Besides its intuitive appeal,
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another advantage of IRFs is that they show the duration of the responses. Thus, we will mostly rely

on IRFs for exposition in the remaining of the paper. As the IRF is a non-linear function of parameter

estimates, we calculate the 95% confidence bounds of the IRF through simulations. In each iteration

a parameter value is drawn from a normal distribution with a mean equal to the point estimate and

a covariance matrix equal to the estimated parameter covariance matrix. Details of this simulation

method are provided in Appendix A. In the next two sections, we present the IRFs that are most

directly related to our main findings.

5 Results: Pecking Order

In this section we test the pecking order hypothesis laid out in Section 2.

5.1 Testing the pecking order hypothesis

We focus on testing the specific form of the pecking order hypothesis (Figure 2(b)) because it makes

stronger (i.e. more specific) predictions. Evidence supporting the specific form would also support

the generic form. For completeness, after presenting results for DarkMid, DarkNMid, and Lit, we

also discuss the other three dark venue types (DarkRetail, DarkPrintB, and DarkOther).

A VIX shock

Starting with our estimated VARX model and the steady state, we shock VIX by 100% upward (i.e.

shock ln(VIX) by ln(2)) and examine the resulting changes in volume shares of DarkMid, DarkNMid,

and Lit in the following minutes.15 Their volume shares are denoted as SDarkMid, SDarkNMid, and

15 While the VARX model is written in terms of volumes, the calculation of market shares is straightforward from the
estimated coefficients. Specifically, following the VIX shock at the steady state, the VARX model we already estimated
spells out the future paths of all transaction volumes in the next 1, 2, 3, . . . minutes. From these volumes we calculate the
market shares and associated confidence bound by simulation. The steady state levels of the market shares are defined
as the average of all the minute-day-stock observations. The steady-state market shares calculated this way are slightly
different from those shown in Figure 3, in which the market share of each type is computed as the sum of volume in that
venue type divided by the sum of TAQ volume during the entire sample period.
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Table 3: VARX Estimation. This table reports the estimation result of the VARX model at the minute frequency. All variables are log-transformed
except the earnings announcement surprise EpsSurprise. Panel (a) reports the estimated coefficients. Panel (b) reports the correlations of the
estimated residuals. In Panel (b) we also included VDark, defined as the sum of the volumes in five types of dark venues, and VLit, defined as
TAQVolume less VDark.

(a) Estimated coefficients

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther RelSpread TopDepth HFTinTopDepth TAQVolume HFTinVlm RealVar VarRat10S

Endogenous variables: 1 minute lag

VDarkMid (-1) 0.213** 0.037** 0.030** 0.005** 0.041** -0.001* 0.002** -0.000 0.019** 0.001 0.005** -0.001*

VDarkNMid (-1) 0.033** 0.196** 0.053** 0.004** 0.049** -0.000 0.005** 0.001 0.042** 0.000 0.003* -0.002**

VDarkRetail (-1) 0.020** 0.035** 0.112** 0.002** 0.040** 0.001* -0.001 -0.001 0.020** 0.003** 0.007** 0.002**

VDarkPrintB (-1) 0.009* 0.007 0.009* 0.054** 0.018** -0.000 0.001 0.002 0.003 0.000 0.003 0.000

VDarkOther (-1) 0.021** 0.036** 0.038** 0.002** 0.146** 0.000 -0.001** -0.000 0.019** -0.002* 0.006** -0.001

RelSpread (-1) -0.072** -0.089** -0.038** -0.003 -0.061** 0.409** -0.066** -0.100** -0.368** -0.116** 0.233** -0.039**

TopDepth (-1) 0.104** 0.170** 0.077** 0.006 0.082** -0.040** 0.391** -0.028* 0.158** -0.011* -0.134** 0.014**

HFTinTopDepth (-1) -0.001 -0.001 -0.003* -0.000 -0.004** -0.004** -0.002* 0.336** -0.002 0.044** 0.001 0.002**

TAQVolume (-1) 0.015** 0.051** 0.047** 0.001* 0.032** -0.003** 0.004** -0.005 0.213** -0.006* 0.033** 0.002

HFTinVlm (-1) -0.003* -0.005** -0.002 -0.000 -0.007** 0.000 -0.000 0.004* -0.004** 0.546** 0.001 0.001

RealVar (-1) -0.025** -0.046** -0.013** -0.000 -0.033** 0.010** -0.016** 0.005 -0.037** 0.010** 0.234** -0.022**

VarRat10S (-1) 0.004 0.001 0.018** 0.002 0.005 0.004** -0.002** 0.001 0.013** 0.007** 0.023** 0.048**

Endogenous variables: 2 minutes lag

VDarkMid (-2) 0.179** 0.024** 0.018** 0.003** 0.029** -0.000 0.003** 0.001 0.011** -0.001 0.004** 0.000

VDarkNMid (-2) 0.021** 0.143** 0.037** 0.002* 0.033** 0.001** 0.005** 0.001 0.026** -0.001 0.002 -0.000

VDarkRetail (-2) 0.015** 0.026** 0.092** 0.001 0.031** 0.002** -0.001* -0.001 0.018** 0.002* 0.012** 0.002**

VDarkPrintB (-2) 0.009* 0.005 0.010* 0.031** 0.006 -0.000 0.001 -0.000 -0.001 -0.001 -0.001 -0.000

VDarkOther (-2) 0.010** 0.022** 0.031** 0.000 0.113** 0.000 -0.001** -0.002 0.010** -0.000 0.003** 0.000

RelSpread (-2) 0.021** 0.065** 0.066** -0.006* 0.075** 0.223** -0.035** -0.101** 0.073** 0.010 0.113** 0.014**

TopDepth (-2) 0.009 0.039** -0.011 0.005 -0.043** -0.018** 0.235** -0.001 -0.010 -0.014** -0.102** 0.003

HFTinTopDepth (-2) -0.001 -0.002 -0.004** 0.000 -0.004** -0.005** -0.000 0.171** -0.008** 0.007** -0.004** -0.000

TAQVolume (-2) 0.001 0.030** 0.029** 0.003** 0.004* -0.010** 0.010** -0.007** 0.144** -0.003 -0.009** 0.002*

HFTinVlm (-2) 0.002 0.002 -0.001 -0.000 0.002 -0.001** 0.000 0.018** 0.001 0.116** 0.005** 0.001

RealVar (-2) -0.003 -0.014** 0.005* -0.002* -0.001 0.009** -0.011** 0.000 0.002 0.005* 0.151** -0.010**

VarRat10S (-2) -0.001 -0.007* 0.004 0.001 -0.003 0.002** 0.001 0.002 -0.006* 0.005* -0.001 0.030**
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Table 3 continued. . .

(a) Estimated coefficients (continued)

VDarkMid VDarkNMid VDarkRetail VDarkPrintB VDarkOther RelSpread TopDepth HFTinTopDepth TAQVolume HFTinVlm RealVar VarRat10S

Exogenous variables

VIX (-1) -0.142 0.268* -0.401** 0.155** 0.353** 0.046** 0.009 -0.107 0.785** 0.176** 0.813** -0.001

EpsSurprise 0.077* 0.184* 0.221** 0.086* 0.115* 0.005 -0.000 0.071 0.293** 0.035 0.079** 0.006

R2 0.130 0.138 0.070 0.005 0.087 0.366 0.353 0.190 0.143 0.398 0.162 0.008

# obs. 937674 937674 937674 937674 937674 937674 937674 937674 937674 937674 937674 937674

*, ** Significant, respectively, at 5%, and 1%. All tests are two sided.

(b) Residual correlations

VDarkNMid VDarkRetail VDarkPrintB VDarkOther VDark VLit RelSpread TopDepth HFTinTopDepth TAQVolume HFTinVlm RealVar VarRat10S

VDarkMid 0.185** 0.123** 0.010** 0.253** 0.361** 0.143** 0.004** 0.009** 0.010** 0.199** 0.022** 0.124** -0.015**

VDarkNMid 0.212** 0.011** 0.226** 0.675** 0.227** 0.016** 0.014** 0.014** 0.335** 0.029** 0.171** -0.014**

VDarkRetail 0.006** 0.161** 0.813** 0.182** 0.015** 0.004** 0.004** 0.318** 0.013** 0.129** -0.002*

VDarkPrintB 0.009** 0.027** 0.033** 0.001 0.003* -0.001 0.035** 0.000 0.006** 0.001

VDarkOther 0.460** 0.199** 0.019** -0.008** 0.007** 0.270** 0.028** 0.176** -0.011**

VDark 0.288** 0.022** 0.009** 0.011** 0.451** 0.031** 0.220** -0.012**

VLit 0.059** -0.027** 0.015** 0.985** 0.065** 0.495** -0.005**

RelSpread 0.104** 0.150** 0.059** 0.040** 0.125** -0.004**

TopDepth 0.067** -0.024** -0.018** -0.095** -0.003**

HFTinTopDepth 0.016** 0.010** 0.025** 0.001

TAQVolume 0.066** 0.501** -0.007**

HFTinVlm 0.108** 0.001

RealVar -0.106**

*, ** Significant, respectively, at 5%, and 1%. All tests are two sided.
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SLit, respectively. The pecking order hypothesis stated in Section 2 predicts that the elasticities of

Lit, DarkNMid, and DarkMid market shares to VIX are positive, mildly negative, and most negative,

respectively.

Figure 5 depicts the findings. The ordering of these three venue types conforms to the pecking

order hypothesis. In the minute immediately following the VIX shock, SDarkMid shows the most

negative reaction, falling from the steady state of 2.3% to 1.2%, a 52% reduction. SDarkNMid also

falls from the steady state of 7.1% to 5.0%, but its loss of market share is a smaller fraction of its

steady state counterpart, plus 30% . By sharp contrast, SLit increases from 77.5% to 90.0%, a gain of

16%. In all three venue types, the effects on market shares last for about 5 minutes before dying out.

The intuitive sorting of the three venue types shown in Figure 5 is supported by formal economet-

ric tests (a theory that motivates these tests is found in Section 6):

Null 1: The elasticities of SDarkMid and SDarkNMid to VIX shocks are the same;

Null 2: The elasticities of SDarkNMid and SLit to VIX shocks are the same.

The test results are reported in Table 4. Both nulls are rejected by the data. The tests show that after

the upward VIX shock, the percentage change of SDarkMid is more negative than that of SDarkNMid

at the 1% significance level over the next 5 minutes. The percentage change of SDarkNMid is more

negative than that of SLit at the 1% significance level over the next 4 minutes.

Overall, the evidence from VIX shocks supports the pecking order hypothesis.

An earnings announcement shock

The second shock we exploit is the earnings surprises of individual firms. Starting with the estimated

VARX model and the steady state, we impose a 1% earnings surprise and calculate the new steady-

state market shares of DarkMid, DarkNMid, and Lit. For each venue type, this level is compared

with the steady-state market share on days with no earnings announcements. Again, the pecking

order hypothesis predicts that the percentage changes in the market shares should have the following

ordering: DarkMid, DarkNMid, and Lit, from the most negative to the most positive.
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Figure 5: Pecking order following a shock in VIX. This figure plots the impulse response functions of
the market shares of DarkMid, DarkNMid, and Lit following a 100% upward shock to VIX. The impulse
responses are plotted for a 15-minute horizon, toward the end of which the market shares of the venues revert
to their steady state levels. At each minute, the two-standard-deviation confidence bounds are constructed by
simulation. The sequence of the venues is motivated by the specific form of the pecking order hypothesis (see
Figure 2(b)).
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Table 4: Testing the pecking order of trade venues. This table shows the statistical significance of the
difference in volume share elasticities (with respect to a VIX shock). Confidence bounds at 99% are constructed,
based on 10,000 simulations, for the differences in the volume share changes for the 10 lags (10 minutes) after
the VIX shock. If both the upper and the lower bounds are of the same sign, the difference of the elasticities is
significantly different from zero. These significant numbers are shaded.

1 min. 2 min. 3 min. 4 min. 5 min. 6 min. 7 min. 8 min. 9 min. 10 min.

(∆SDMid/SDMid) - (∆SDNMid/SDNMid)

upper bound (99.5%) -1.1 -0.7 -1.2 -0.2 -0.1 0.3 0.4 0.4 0.4 0.4

lower bound (0.5%) -45.7 -13.2 -13.5 -5.2 -3.5 -1.5 -0.9 -0.4 -0.2 -0.1

(∆SDNMid/SDNMid) - (∆SLit/SLit)

upper bound (99.5%) -18.7 -2.8 -3.3 -0.2 0.2 0.6 0.7 0.7 0.6 0.5

lower bound (0.5%) -79.8 -18.1 -17.2 -5.5 -3.2 -1.2 -0.6 -0.3 -0.1 -0.1

Figure 6 plots the results, where the venue types are arranged the same way as in Figure 5. A

1% higher earnings surprise significantly reduces SDarkMid by about 50%. While SDarkNMid and

SLit do not show statistically significant changes, the point estimates point to the same direction as

in Figure 5. The limited statistical significance here is likely due to the small number of firm-day

observations that have earnings announcements (67 out of 117× 21). Overall, the results for earnings

announcement still support the pecking order hypothesis, although the statistical significance only

shows at the DarkMid-DarkNMid step.

5.2 Reactions of DarkRetail, DarkPrintB, and DarkOther to VIX and earn-

ings shocks

The specific form of pecking order hypothesis does not “rank” the remaining three types of dark

venues: DarkRetail, DarkPrintB, and DarkOther. This is a conservative choice, for the following

reasons. First, because retail investors have little control of their order flows in reality, volumes in

the DarkRetail venue type are much more likely driven by the choice of broker-dealers, rather than
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Figure 6: Pecking order following a shock in earnings surprises. This figure plots the steady-state values
of venue shares for days with no earnings announcements (EA) and the corresponding venue shares following
a 1% EPS surprise on an earnings day. The two-standard-deviation confidence bounds are constructed on the
shocked market shares by simulation.
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Figure 7: Pecking order of remaining venue types. This figure plots the responses of the market shares of the remaining three dark venue
types—DarkRetail, DarkPrintB, and DarkOther—to a VIX shock (Panel (a)) and a earnings surprise shock (Panel (b)).
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(b) Responses to an earnings surprise shock
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investors themselves, to route and to execute these orders off exchange. Second, trades in DarkPrintB

may be arranged way before execution takes place, so volumes in the DarkPrintB category may not

reflect the current market condition as sensitively as other dark venues. Lastly, the mechanism of

DarkOther is not fully transparent to us, as it is the residual category. To be prudent, we have excluded

all three venue types from the specific form of pecking order hypothesis.

That said, it is still interesting study the responses of SDarkRetail, SDarkPrintB, and SDarkOther

to shocks in VIX and earnings surprises. Figure 7 shows the results. Two salient patterns stand

out. On the one hand, market shares in all three types of venues decrease following a positive shock

to VIX. This drop is qualitatively similar to that of DarkMid and DarkNMid. In addition, it can

also reflect broker-dealers’ reluctance in providing liquidity to retail and institutional investors (at

attractive enough prices) under a high aggregate volatility. This interpretation is consistent with the

finding by Nagel (2012) that the return from liquidity provision in equity markets is highly predicted

by VIX. On the other hand, following an earnings shock, the two institution-oriented dark venue

types, DarkPrintB and DarkOther, significantly lose market shares, but the retail-oriented venue type,

DarkRetail, does not. This difference may reflect the concern of adverse selection by broker-dealers

when providing liquidity to institutional investors after firm-specific news, but this concern seems

mild or nonexistent when broker-dealers trade against retail investors.

5.3 Venue pecking order and high-frequency trading

We close our empirical analysis by zooming in on high-frequency trading (HFT) and studying how

it relates to the pecking order hypothesis. The prevalence of HFTs is commonly cited as one reason

why investors are increasingly using dark venues. In the context of the pecking order hypothesis,

investors’ concern for interacting with HFTs is one form of cost for trading in lit venues.

If concerns regarding HFTs encourage investors to execute orders in the dark, a natural question

arises: How does HFT activity affect investors’ order flow down the pecking order? A definitive

answer requires some exogenous shock that affects HFT activity but not volumes in dark venues.
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We do not (yet) have such exogenous variation. Nonetheless, we attempt to provide a partial answer

by examining the responses of HFT participation in lit venues to VIX and earnings shocks. More

specifically, if HFT participation declines after the VIX and earnings shocks, this pattern would be at

least “consistent with” the conjecture that investors trade more in lit venues because they face a lower

risk of interacting with HFTs. If the data show the opposite, then this conjecture is less likely. In this

exercise we only focus on large-cap stocks (top tercile of our sample), as HFTs are generally most

active for actively traded stocks.

Panel (a) of Figure 8 depicts how HFT participation responds to a 100% upward shock to VIX.

In the Nasdaq market, HFTs participation in both trading and quoting increase by about 20% after a

100% VIX shock. HFTinTopDepth reverts to the steady states rather quickly, in about two minutes,

but HFTinVolume reverts back to the steady state after about 10 minutes. To the best of our knowledge,

the result that HFTs participation increases in VIX is new to the HFT literature.

Panel (b) of Figure 8 depicts the steady-state HFT participation measures, HFTinTopDepth and

HFTinVolume, on days with no earnings announcement and after a one-percentage-point shock to

EpsSurprise. Again, probably because of a small sample of firm-days with earnings announcements,

none of these tests show statistical significance.

The evidence reveals that HFTs become more active in trading and quoting under a higher ag-

gregate volatility. If investors fear HFT for the risk of “front-running” or “predatory trading,” this

evidence suggests that they still prefer immediate transactions to avoiding HFT when volatility is

high. In the context of the pecking order hypothesis, the evidence here is inconsistent with the con-

jecture that investors use lit venues more under a higher volatility because HFTs become less active

in these situations.
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Figure 8: HFT responses to shocks in VIX and earnings This figure shows the responses of the two HFT
activity measures after a shock to VIX in Panel (a), and earnings, in Panel (b). In each panel, the left-hand
graph shows the IRF of the participation fraction of HFT in the top depth, and the right-hand graph shows the
IRF of the HFT trading volume fraction. The two-standard-deviation confidence bounds are constructed by
simulation.
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6 Simple Model to Formalize the Pecking Order Hypothesis, and

Make Welfare Comparisons

This section proposes a simple model that characterizes investors’ choices among three venue types:

DarkMid, DarkNMid, and Lit. As discussed above, relative to existing theories of dark pools, our

simple model distinguishes different types of dark venues. The model and its analysis formalize

32



the intuition that led to the pecking order hypothesis. The model further allows us to quantitatively

measure what market fragmentation means for welfare.

6.1 Model setup

Asset. There is one traded asset. Its fundamental (common) value is normalized to zero. All players

in this model have symmetric information about the asset and value it at zero. To formalize a pecking

order hypothesis based on the urgency of trades, a symmetric-information setting suffices.

Venues. There are three trading venues: Lit, DarkMid, and DarkNMid.

• Lit is populated by infinitely many competitive and infinitesimal liquidity providers who have

the same marginal cost β (> 0) for taking on one unit of the asset per capita, either long or short.

The cost can be an operation cost or a margin cost. Together, these liquidity providers supply

infinite depth at prices β and −β. This construct is similar to the “trading crowd” assumption in,

for example, Seppi (1997) and Parlour (1998).

• DarkMid crosses buy and sell orders at the midpoint price, i.e., at 0. If unbalanced, only the

matched part of the order flow gets executed. For example, if there are buy orders for 100 units

in total and sell orders for 40 units then only 40 units are matched and executed.

• DarkNMid is run by a single competitive liquidity provider who starts with inventory zero, but

incurs an inventory cost of −ηx2/2 for taking a (long or short) position of x, where η > 0. The

liquidity provider posts an ask price schedule,

p+ = δq+,

where q+ > 0 denotes the quantity to buy, and a bid price schedule,

p− = −δq−,
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where q− > 0 denotes the quantity to sell. The constant δ will be determined in equilibrium

such that the liquidity provider breaks even in expectation. (We restrict to linear schedules for

simplicity.) The average transaction price for sending in a buy order of size q is δq/2. For a sell

order it is −δq/2. The liquidity provider can be viewed as the broker-dealer who operates this

dark venue.

Investors. There are two large “representative” investors, a buyer and a seller. Having only two

investors, rather than many, simplifies the exposition greatly at little cost of economics. The large

buyer and seller receive independent and identically distributed liquidity shocks. The buyer starts

with a short position −Z+ ≤ 0 and wishes to buy quantity Z+. The seller starts with a long position

Z− ≥ 0 and wishes to sell Z−. Z+ and Z− are Bernoulli trials, Q > 0 with probability φ ∈ (0, 1) and

zero with probability (1 − φ). This distributional assumption both keeps the analysis tractable and

captures one salient feature of the data, i.e., for most minutes dark volume is zero.

If a large investor is left with a non-zero inventory after the trading round (i.e., the difference

between the desired trade amount and the actual traded amount), say x, he incurs a quadratic cost of

(γ/2)x2, with γ > 0. Here, γ could be an inventory cost, a proxy for risk-aversion, or the cost of a

missed opportunity to trade on a short-lived private signal. The γ is the key parameter of the model.

We interpret it broadly as investors’ urgency to trade: The higher is γ, the larger is the cost of holding

a non-zero net position, and hence investors are more eager to trade.16

Timing. There is one trading round. Before trading, the large buyer and seller observe, privately,

their shock sizes. They then decide simultaneously on the order sizes they send to the three venues.

Venues execute trades simultaneously according to their specific trading protocols.

16 For example, the interpretation of risk aversion is consistent with Campbell, Grossman, and Wang (1993), who argue
that the market’s aggregate risk aversion—which is correlated with VIX, for example—reflects the change of (a subset of)
individual investors’ risk aversion.
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6.2 Equilibrium

We use “x” to denote the quantities sent to the trading venues. The superscripts “+” and “−” denote

variables associated with the buyer and the seller, respectively. The subscripts “M”, “N”, and “L”

denote DarkMid, DarkNMid, and Lit, respectively. We focus on a symmetric-strategy equilibrium,

i.e., the buyer and the seller choose the same order flow sizes (but different signs): x+
i (Z) = x−i (Z) for

all (i,Z) ∈ {M,N, L} × {0,Q}.

Optimal order sizes. Fix the seller’s strategy x−i (Z−) and consider the buyer’s choice of x+
i (Z+) for

all (i,Z+,Z−) ∈ {M,N, L}× {0,Q}× {0,Q}. Suppose that the buyer receives a shock of size z. Note that

from the buyer’s perspective, the seller’s order size Z− is a Bernoulli random variable. To emphasize

this randomness, we use capital letters to denote X−i , for i ∈ {M,N, L}, and let V+
M := min{x+

M, X
−
M}.

Then, the buyer’s expected profit is

π+(z) =

price to pay in DarkMid︷          ︸︸          ︷
−E

[
0 ·V+

M(z)
]

price to pay
in DarkNMid︷     ︸︸     ︷
−
δ

2
x+

N(z)2

price to pay in Lit︷    ︸︸    ︷
−β ·x+

L(z)

+E
[
0 ·

(
z − V+

M(z) − x+
N(z) − x+

L(z)
)]

︸                                        ︷︷                                        ︸
liquidation value of remaining position

−
γ

2
E

(
z − V+

M(z) − x+
N(z) − x+

L(z)
)2︸                                      ︷︷                                      ︸

quadratic cost for failing to trade

,

which can be simplified to

π+(z) = −
γ

2
E

(
z − V+

M(z) − x+
N(z) − x+

L(z)
)2
−
δ

2
x+

N(z)2 − βx+
L(z). (2)

The buyer thus chooses six parameters to maximize his expected profit (2): x+
M(0), x+

N(0), x+
L(0),

x+
M(Q), x+

N(Q), and x+
L(Q).

Because we look for a symmetric equilibrium, from this point on we suppress the superscript ±

unless we need to explicitly distinguish a buyer from a seller.
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Proposition 1 (Equilibrium order flows). If

Q ≤ ∆ ≡ β

(
1

(1 − φ)γ
+

1
(1 − φ)η

)
, (3)

then there exists an equilibrium with the following strategies:

xM(0) = 0; xM(Q) =
δ

δ + (1 − φ)γ
Q, (4)

xN(0) = 0; xN(Q) =
(1 − φ)γ

δ + (1 − φ)γ
Q, (5)

xL(0) = 0; xL(Q) = 0. (6)

If Q > ∆, then there exists an equilibrium with the following strategies:

xM(0) = 0; xM(Q) =
β

(1 − φ)γ
, (7)

xN(0) = 0; xN(Q) =
β

δ
, (8)

xL(0) = 0; xL(Q) = Q − ∆. (9)

In both cases, the DarkNMid liquidity provider sets the slope of price schedules δ = (1 − φ)η.

The intuition of this equilibrium is as follows. Clearly, if the investor draws a zero liquidity shock

then he does not send orders anywhere. If he draws the nonzero shock Q then he first considers Dark-

Mid because it has the best transaction price (saving half the spread). Because the order size Q cannot

be executed in DarkMid at zero (inventory) cost, he must strike a balance between nonexecution risk

in DarkMid, the price impact in DarkNMid, and the spread in Lit.

The following heuristic argument illustrates this trade-off. A buyer’s expected marginal cost of

sending an additional infinitesimal quantity to DarkMid is (1 − φ)xM(Q)γ, where we use the fact

that the DarkMid order size xM(Q) is not matched at all if the seller is small, and that the marginal

inventory cost of holding unexecuted quantity q is γq. The marginal cost of sending an additional

infinitesimal quantity to DarkNMid is δxN(Q). In equilibrium, these two marginal costs must be
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equal, for otherwise the buyer would want to take a marginal unit from one dark venue to the other.

Thus, we have

(1 − φ)xM(Q)γ = δxN(Q). (10)

The above equation says that xM(Q) and xN(Q) must increase simultaneously in a fixed proportion as

Q increases.

If Q ≤ ∆, we can show that the marginal cost of using DarkNMid δxN(Q) is no larger than the

Lit spread β. Thus, Lit is not used. The equilibrium order sizes can be solved by observing that in

equilibrium xM(Q) = Q − xN(Q), that is, the desired quantity in DarkMid is equal to the residual. If

Q > ∆, equation (10) hits a corner at

(1 − φ)xM(Q)γ = δxN(Q) = β, (11)

from which we can solve xM(Q) and xN(Q). Lit order size is given by xL(Q) = Q − xM(Q) − xN(Q).

Note that the equilibrium of Proposition 1 is not unique. There exists another, less interesting

equilibrium in which neither the buyer nor the seller uses DarkMid, even if they happen to be large.

This other equilibrium has the counterfactual implication that DarkMid has zero market share.

Interestingly, the DarkNMid liquidity provider is more aggressive (i.e., he sets prices that respond

less to additional quantity) if large orders are more likely. This is because he makes more profits from

large investors, even though it also increases his inventory cost.

6.3 Urgency elasticity of venue market shares

To establish the pecking order hypothesis, we are interested in how the market share of each of the

three venues responds to a change in investor urgency. We first compute the expected market shares

in equilibrium and then rank the venues according to their market share elasticities with respect to the

urgency parameter, γ.

The focus on market shares as opposed to raw volume is consistent with existing empirical studies
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of dark pools and fragmentation (see, for example, O’Hara and Ye, 2011; Buti, Rindi, and Werner,

2011; and Ready, 2014) as well as the empirical tests conducted in Section 5. From this point on we

focus on the second case of Proposition 1 because it implies a strictly positive market share for all

venues, as in reality.

A positive γ shock is naturally thought of as the model equivalent of a shock to VIX or EPS in

the empirical approach. It raises investors’ opportunity cost of not trading. One could argue that

the elevated volatility following VIX and EPS shocks also raises inventory cost for intermediaries in

DarkNMid and Lit. Therefore their opportunity cost of not trading is raised as well. The additional

volume that follows these shocks, however, leads us to believe that at least part of the shock is at-

tributable to a disproportionately large shock to investors as compared to intermediaries. One could

think of γ as a reduced-form representation of a risk-aversion shock experienced by end investors

in excess of that by intermediaries. This channel is perhaps most eloquently stated in Campbell,

Grossman, and Wang (1993, p. 924):

“We consider an economy in which there exist two assets: a risk-free asset and a risky

asset (‘stock’). We assume that innovations in the stock price are driven by three random

variables: (i) the innovation to the current dividend, (ii) the innovation to information

about future dividends, and (iii) the innovation to the time-varying risk aversion of a

subset of investors. Shock (i) causes the payoff to the stock to be stochastic so that a

premium is demanded by investors for holding it. Shock (iii) generates changes in the

market’s aggregate risk aversion, which cause the expected return on the stock to vary.

Shock (ii) is in the model so that prices and dividends do not fully reveal the state of the

economy and volume provides additional information.” [Emphasis added]

A γ shock in our model corresponds to shock (iii) in the “canonical” Campbell, Grossman, and

Wang (1993) model because it captures all the effects we empirically document. Shocks (i) and (ii)

generate volatility and a risk premium, but they do not generate trading. Reallocation of assets only

happens when risk aversion in one group changes relative to another group, i.e., a type (iii) shock.
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Moreover, shock (iii) in and of itself generates elevated volatility as it triggers a price change due

to changing “aggregate risk aversion.” A type (iii) shock therefore becomes a sufficient condition to

generate the empirical pattern of elevated volatility and volume.

The expected volume in the three venues and the total volume are given by

v̄M = φ2(2xM(Q)) + (1 − φ)2(2xM(0)) + 2φ(1 − φ)(2xM(0)) =
2φ2β

(1 − φ)γ
, (12)

v̄N = φ2(2xN(Q)) + (1 − φ)2(2xN(0)) + 2φ(1 − φ)(xN(Q) + xN(0)) = 2
φβ

δ
, (13)

v̄L = φ2(2xL(Q)) + 2φ(1 − φ)xL(Q) = 2φ
(
Q −

β

(1 − φ)γ
−
β

δ

)
, (14)

v̄ = v̄M + v̄N + v̄L = 2φQ −
2φβ
γ
. (15)

Note that in the above calculation we double-count volume in DarkMid. In practice, operators of

DarkMid typically act as buyer to the seller and seller to the buyer, so one match shows up as two

trades. Our pecking order results are not affected if DarkMid volume is single-counted.

The volume shares of different venues are defined as,

si :=
v̄i

v̄
, for i ∈ {M,N, L}.

Signing partial derivatives of volume shares with respect to γ yields the model’s main proposition. It

formalizes this paper’s pecking order hypothesis, depicted in Panel (b) of Figure 2.

Proposition 2 (Venue share and urgency). As investor urgency increases, lit volume share in-

creases and dark volume share decreases. Furthermore, DarkMid is more sensitive to urgency

than DarkNMid:

∂sM/sM

∂γ/γ
<
∂sN/sN

∂γ/γ
< 0 <

∂sL/sL

∂γ/γ
.

The candidate model of this section is meant to be simple but yet able to demonstrate that the
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pecking order hypothesis can emerge endogenously as an equilibrium outcome. There are a number

of potential extensions to enrich the model. One direction is to incorporate asymmetric information.

Another is to directly model the desired trade size Q of large investors from first principles. Yet

another interesting but technically difficult direction is to consider a fully dynamic model in which

investors can route orders across the three venue types. These potential extensions are out of the scope

of the empirical focus of this paper and left for future research.

6.4 The welfare implications of market fragmentation

In this subsection we examine the welfare implications of market fragmentation across venue types in

the same modeling framework. Welfare is measured by the overall costs, including explicit transaction

costs and implicit inventory costs, to the representative buyer and seller. A model is important for

measuring welfare because one cannot directly observe counterfactuals in the data, namely investors’

costs without dark venues.

We examine four market structures: {Lit} (L), {DarkMid, Lit} (ML), {DarkNMid, Lit} (NL), and

{DarkMid, DarkNMid, Lit} (MNL). In each market structure, we can solve the equilibrium as in the

following proposition.

Proposition 3. Suppose that Q > ∆. The following strategies make up an equilibrium to the trading

game in the various market structures: L, ML, NL, and MNL.

1. An investor who draws a zero liquidity shock does not send any order to any of the venues

that are available; that is, x±(0) = 0 for all market structures.

2. If DarkNMid is open, the DarkNMid liquidity provider sets δ = (1 − φ)η.

3. An investor who draws the nonzero shock Q sends orders to venues according to the following

table:
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Market structure DarkMid DarkNMid Lit

MNL β

(1−φ)γ
β

(1−φ)η Q − β

(1−φ)γ −
β

(1−φ)η

ML β

(1−φ)γ Q − β

(1−φ)γ

NL β

δ
Q − β

δ
−

β

γ

L Q − β

γ

The proof of Proposition 3 follows the same logic as the proof of Proposition 1 and is omitted.

These strategies allow us to calculate the expected costs to investors, including explicit execution

costs paid to liquidity providers and the implicit inventory cost for unexecuted quantities. We use “C”

to denote these costs. Straightforward calculation yields:

CMNL = φ2

2xL(Q)β + 2
δxN(Q)2

2

 + (1 − φ)2 · 0 + 2φ(1 − φ)

xL(Q)β +
δxN(Q)2

2
+
γ

2

(
β

(1 − φ)γ

)2


= 2φβQ −
φβ2

(1 − φ)γ
−

φβ2

(1 − φ)η
, (16)

CML = 2φβQ −
φβ2

(1 − φ)γ
, (17)

CNL = 2φβ
(
Q −

β

δ
−
β

γ

)
+ 2φδ

(β/δ)2

2
+ 2φ

γ

2
(β/γ)2 = 2φβQ −

φβ2

(1 − φ)η
−
φβ2

γ
, (18)

CL = 2φβ
(
Q −

β

γ

)
+ 2φ

γ

2
(β/γ)2 = 2φβQ −

φβ2

γ
. (19)

From these costs we can calculate the welfare cost of shutting down one or both types of dark

venues. We use the current market structure, MNL, as the benchmark.

CL −CMNL =
φβ2

(1 − φ)η
+

φ2β2

(1 − φ)γ
=
β

2
(v̄M + v̄N), (20)

CNL −CMNL =
φ2β2

(1 − φ)γ
=
β

2
v̄M, (21)

CML −CMNL =
φβ2

(1 − φ)η
=
β

2
v̄N . (22)
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Interestingly, the welfare costs of shutting down dark venues is equal to β/2, a half of the half-

spread β, multiplied by the volume attracted by these dark venues. This result is not obvious ex ante.

For example, the actual cost saving in DarkMid turns out to be only a half of the dollar value executed,

βv̄M, because of the nonexecution risk in DarkMid.

As the trading volumes and the spread in Lit can be directly read from the data, it is unnecessary to

estimate the structural parameters like preference γ and η and order size Q. A quantitative assessment

of how fragmentation affects welfare becomes relatively straightforward.

Dollar-value measure. We first use a dollar-value measure to quantify welfare improvement gen-

erated by the availability of dark venues, i.e., the saved cost, CL −CLNM.

Using equation (20), the aggregate daily dollar cost saving for all 117 of the sample stocks and

over all 390 × 21 minutes is

1
21

390×21∑
t=1

117∑
j=1

β( j, t)P( j, t)
2

(
vM( j, t) + vN( j, t)

)
, (23)

where P( j, t) is the price of the stock j at the end of minute t. Note that this calculation essentially

scales the dollar spread by dark volumes. This measure of cost savings amounts to $40,999 per day

for our sample stocks.

Although our sample only includes 117 stocks, a rather small fraction of the entire U.S. equity

market, it provides a fair representation of large-cap, medium-cap, and small-cap stocks (see Section

3). To the extent that our sample reasonably represents the composition of the universe of U.S. stocks,

one way to gauge the cost savings across the entire market is to simply scale the above estimate by

the ratio of trading volume of our sample to the total equity volume.17

Our sample has an average daily trading volume of 0.56 billion shares. The U.S. equity daily

volume is approximately 7.80 billion shares, as of October 2014.18 Hence, scaling up the aggregate

17 A sufficient but not necessary condition for the validity of this approach is that conditional on the market cap tercile
of a stock, its dollar spread is uncorrelated with volume in DarkMid and DarkNMid.

18 The estimate of daily equity trading volume in U.S. is obtained from Tabb Liquidity Matrix:
http://tabbforum.com/liquidity-matrix. Since we extrapolate from a sample of October 2010 to the broad market
of October 2014, this extrapolation implicitly assumes that the average characteristics of stocks do not move substantially
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daily costs savings by a factor of 7.80/0.56 yields a broad-market cost saving—due to the presence

of DarkMid and DarkNMid—of $5.71 million per day, or $1.43 billion per year. Of course, this is a

rough estimate and likely to be noisy.

This cost saving is economically sizeable. For instance, Berk and van Binsbergen (2014) find that

an average mutual fund in their sample adds $3.2 million per year, gross of fees. Since their sample

consists of about 6000 funds, the total value added amounts to $19.2 billion per year. Thus, the cost

saved by DarkMid and DarkNMid is 7.4% relative to the value added by all mutual funds in the Berk

and van Binsbergen (2014) sample.

Relative measures. We consider two additional relative measures to quantify the cost saving. The

first measure is the saved cost due to dark venues, CL − CLNM, as a fraction of the total spread cost in

Lit, βv̄L. We have

CL −CLNM

v̄Lβ
=

v̄M + v̄N

2v̄L
. (24)

Calculating this ratio stock by stock and taking the average, we get 4.6%.19

The second relative measure is CL−CLNM as a fraction of the total cost of execution and inventory,

CLNM, under the current market structure. We have

CL −CLMN

CLMN
=
β(v̄M + v̄N)
2φβQ + βv̄L

=
v̄M + v̄N

2φQ + v̄L
. (25)

The total latent trading interest 2φQ is not observed in the execution data, but we can bound it by

observing that 2φQ > v̄L + v̄M + v̄N (see equation (15)). Thus,

CL −CLMN

CLMN
<

v̄M + v̄N

v̄M + v̄N + 2v̄L
. (26)

over time.
19 Alternatively, one can directly use the average volume reported in Table 2 and obtain

CL −CLNM

v̄Lβ
=

v̄M + v̄N

2v̄L
≈

0.259 + 0.941
2 × 8.931

≈ 6.7%.

This estimate is higher than the average of stock-by-stock estimates because of the Jensen’s Inequality effect.
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Again, calculating this ratio stock by stock and taking the average, we get 3.8%.20

Discussion. There are three caveats to our dollar-value and relative estimate if they are to be inter-

preted for policy. First, in the model the Lit spread β is invariant to market structure, which is a direct

consequence of the assumption that no one has superior information about the asset fundamentals.

If adverse selection were present, we would expect the two dark venues to attract disproportionately

more uninformed order flows (see Zhu 2014 and the empirical evidence discussed there). Thus, if the

dark venues were closed, we would expect the lit spread to become smaller on average, reducing the

investors’ explicit transaction costs in Lit and the implicit delay costs of unexecuted orders.

Second, our measure of fragmentation is at the level of venue types, but not at individual venues.

Our estimates do not address the cost of fragmented liquidity within dark venues of the same type,

such as multiple DarkNMid venues. Third, our model does not address the other three dark venue

types: DarkRetail, DarkOther, and DarkPrintB, for reasons discussed in Section 5.2. The inclusion of

these three types of dark venues in our calculation will likely increase the estimated cost savings due

to dark venues.

7 Conclusion

In this paper, we propose and test a pecking order hypothesis for the dynamic fragmentation of U.S.

equity markets. The hypothesis posits that investors disperse their orders into a series of venue types,

sorted along a pecking order. The position of venue types on the pecking order depends on the

trade-off between cost (price impact) and immediacy (execution certainty). On the top of the pecking

order are low-cost, low-immediacy venues such as midpoint dark pools, whereas in the bottom are

high-cost, high-immediacy venues such as lit exchanges; in the middle of the pecking order are non-

20 Alternatively, one can directly use the average volume reported in Table 2 and obtain

CL −CLMN

CLMN
<

v̄M + v̄N

v̄M + v̄N + 2v̄L
≈

0.259 + 0.941
0.259 + 0.941 + 2 × 8.931

≈ 6.3%.
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midpoint dark pools. A positive shock to investors’ urgency to trade tilts their order flows from the

top of the pecking to the bottom; therefore, the elasticities of venue market shares to urgency shocks

are progressively less negative and more positive further down the pecking order.

We test the pecking order hypothesis using a unique dataset that identifies the minute-by-minute

trading volumes in five different types of dark venues in the U.S. equity markets. A panel VARX

model characterizes the dynamic interrelation between dark trading volumes, HFT participation in lit

venues, and market conditions, as well as two exogenous shocks to investors’ demand for immediacy:

VIX and earnings surprises.

Consistent with the pecking order hypothesis, we find that an upward shock to VIX substantially

reduces the market share of midpoint dark pools, moderately reduces the shares of non-midpoint dark

pools, but increases the share of lit venues. After shocks to earnings surprises, the share of midpoint

pools also declines significantly. Our results offer a pecking order representation for the dynamic

fragmentation of U.S. equity markets.

Finally, we propose a simple theoretical model that formalizes the pecking order hypothesis. The

model also allows us to quantitatively gauge the impact of dark venues on investors’ welfare, measured

by their explicit transaction costs and implicit inventory costs. A simple calibration suggests that

DarkMid and DarkNMid, two types of dark venues that we focus on, save investors $1.43 billion of

costs per year. This amounts to 7.4% of annual gross dollar value added by mutual funds as estimated

by Berk and van Binsbergen (2014).
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Appendix

A Details on the implementation of the panel VARX model

In this appendix we discuss the details of the panel VARX model.

The estimation is implemented via OLS by stacking the observations associated with different

stocks into a single vector. The stock fixed effect is accounted for by adding dummy variables to the

set of regressors. Lags of the variables are only constructed intraday.

The optimal numbers of lags p and r are chosen according to Bayesian Information Criterion

(BIC). Specifically, for each of the 117 stocks, the VARX model is estimated for all pairs of (p, r) ∈

{1, 2, ..., 10}×{1, 2, ..., 5}. Then the best (according to BIC) model is chosen as (p j, r j) for stock j. That

is, we confine the search of the optimal lags within 10 and 5 lags, respectively, for endogenous and

exogenous variables. The above procedure generates 117 pairs of optimal lags of {p j}
117
j=1 and {r j}

117
j=1.

There are 16 p j that are found to be 1, 93 to be 2, and the other 8 to be 3. All r j are 1. We hence

choose p = 2 and r = 1 for parsimony.

The standard errors for panel data estimators should account for potential correlation through time

and across stocks. One standard way to account for these issues is to do “double-clustering” (Petersen,

2009). The laborious (but most flexible) way of implementing such clustering is by calculating

cov(β̂i, β̂ j) =
(
X′X

)−1 V
(
X′X

)−1 with vij =
∑
kt,ls

xiktε̂iktε̂jlsxjls × 1A(ktls), (27)

where i, j ∈ {1, . . . ,N} where N is the number of regressors, k, l ∈ {1, . . . , J} where J is the number of

stocks, and s, t ∈ {1, . . . ,T } where T is the number of time periods. 1A(ktls) is the indicator function

where the subset A of the index value space identifies which auto- or cross-correlations a researcher

worries about. If error terms are independent and identically distributed, then the indicator function

equals one if k = l and t = s. The subset A for an indicator function in a standard double-clustering is

such that:
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1A(ktls) =

1 if k = l or s = t,
0 otherwise.

(28)

A researcher can easily be more conservative and also account for non-zero cross-autocorrelations by

also including changing the s = t condition by, say, |s − t| ≤ 5.

The cumulative impulse response function is most easily calculated by stacking the estimated Φ

matrices, as any VAR can always be written as a first-order VAR. Consider, for example, a VAR with

two lags. This VAR can be written as

[
yt

yt-1

]
=

[
Φ1 Φ2

I 0

]t [ yt-1

yt-2

]
+

[
εt

0

]
. (29)

The t-period cumulative impulse response of the jth variable to a unit impulse in the ith variable is the

jth element of the vector

[
Φ1 Φ2

I 0

]t

ek, (30)

where I is the identity matrix and ek is the unit vector where the kth element is one and all other

elements are zeros.

Confidence intervals on the impulse response function (IRF) are obtained through simulation. The

IRF is a non-linear transformations of the VARX coefficient estimates denoted by θ̂. Each simulation

involves a draw from the multivariate normal distribution N
(
θ̂,Σθ̂

)
, where Σθ̂ is the estimated double-

clustered covariance matrix of the coefficients. Note that this distribution is asymptotically true given

the assumption that the VARX model is correctly specified with normal residual terms. We perform

10,000 independent draws of the coefficients θ̂ and for each draw compute the IRFs at all lags. Thus,

we obtain, for each IRF, an i.i.d. sample of size 10,000. The confidence bounds are then chosen at the

2.5 and the 97.5 (or 0.5 and 99.5) percentiles of the simulated IRFs. The significance levels shown in

table 3 are based on whether the estimates exceed the confidence bounds found above.
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B Transformation between logarithms and levels of market share

variables

In the VARX model implementation, the variables are log-transformed (except EpsSurprise). Log-

transformation has several advantages. For example, the strictly positive variables (e.g. volume,

spread, depth, etc.) are converted to a possibly negative support; the concavity in logarithm dis-

courages the abnormal effects of outliers; the estimation coefficients can be readily interpreted as

elasticity. The key variables of our focus are the (logged) trading volumes in the five dark venues and

the lit venue, denoted by log v1, ..., log v5, and log v6, where the first five are for the five dark venues

and the last v6 is for the trading volume in the lit. (Each of these variables has stock-day-minute

granularity.) For the pecking order hypothesis, it is however useful to think in terms of market shares,

defined as

s j =
v j∑
j v j

for j ∈ {1, ..., 6}.

The purpose of this appendix is to derive the closed-form, exact transformation formula from a

shock in trading volume in one venue to the response of all market shares. Specifically, given a shock

of ∆ log vi, we want to know the immediate response ∆s j, for all j ∈ {1, ..., 6}. Reverse directions from

∆si to ∆ log v j will also be dealt with. These formulas are used in generating the impulse responses in

testing the pecking order hypothesis.

In the derivation below, we shall use the following additional notations. Let v be the total volume:

v =
∑

j v j. We shall use a superscript of “+” to denote the variables after a shock; for example,

log v+
j = log v j + ∆ log v j. Similarly, while s j denotes the market share of venue j, s+

j denotes the

market share after the shock. In the IRF exercise, the pre-shock values will be chosen as the stock-

day-minute average across all raw sample observations. Consider the following cases.
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From ∆ log vi to ∆s j. By construction, log v+
i = log vi + ∆ log vi. Taking the exponential on both

sides gives the level of the post-shock trading volume: v+
i = vi exp ∆ log vi. The post-shock market

share by construction is

s+
i =

v+
i

v+
=

v+
i

v + (v+
i − vi)

.

Substituting with the expression of v+
i and then subtracting si = vi/v yields

∆si = s+
i − si = ... = si ·

(
e∆ log vi−∆ log v − 1

)
(31)

where ∆ log v = log v+ − log v = log(
∑

j,i v j + v+
i ) − log v. The above formula actually applies to both

the venue i whose volume is shocked and any other venue j , i whose volume is not shocked. The

only difference is, as can be seen after substituting the index i with a different j, that ∆ log v j = 0 for

j , i. Finally, we can immediately derive the dark volume share change as the complement of the

change in the lit share:
∑

j≤5 ∆s j = −∆s6, simply because the identity of s6 = 1 −
∑

j≤5 s j.

From ∆ log v to ∆si, assuming proportionally scaling across all venues. Now we shock the total

volume such that log v+ = log v + ∆ log v and make the assumption that the increase in volume is

proportionally scaled across all venues. That is, for each venue i, v+
i − vi = si · (v+ − v), or

v+
i = vi + si∆v = siv + si∆v = si ·

(
v + ∆v

)
= siv+.

Taking logarithm on both sides gives log v+
i = log si +log v+. Substitute log si with log si = log(vi/v) =

log vi − log v and then

log v+
i = log vi − log v + log v+ =⇒ ∆ log vi = ∆ log v. (32)

Applying equation (32) to (31) immediately gives ∆si = 0. Clearly, this holds for all i ∈ {1, ..., 6}.
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From ∆si to ∆ log v j by shocking log vi and proportionally offsetting in other venues, without

changing total volume v. Finally we do the reverse. Suppose we shock si by ∆si. Such a change

in market share must be driven by some change(s) in trading volume(s). Here a particular change is

considered: Let vi change in the same direction as si but all other v j,i move in the other direction so

that the total volume does not change, i.e. v = v+. We want to know, given the size of ∆si, what are

the sizes of ∆ log v j for all j ∈ {1, ..., 6}.

First, consider j = i. By construction, ∆si = v+
i /v

+ − si. Because the total volume is assumed to

be unchanged, we have v+
i = (si + ∆si)v. This enables the second equality below:

∆ log vi = log v+
i − log vi

= log(si + ∆si) + log v − log vi = log(si + ∆si) + log
v
vi

= log(si + ∆si) − log si = log
(
1 +

∆si

si

)
.

(33)

Consider next j , i. To offset ∆vi, summing over all j , i gives
∑

j,i ∆v j = −∆vi. Because the changes

are proportional according to s j, we have

v+
j = v j −

s j∑
h,i sh

∆vi = s j ·

(
v −

∆vi∑
h,i sh

)
.

Take logarithm on both sides and expand log s j = log v j − log v to get

log v+
j − log v j = ∆ log v j = − log v + log

(
v −

∆vi∑
h,i sh

)
= log

(
1 −

∆vi/v∑
h,i sh

)
= log

(
1 −

∆si∑
h,i sh

)
,

(34)

where the last equality follows because the total volume is assumed to be unchanged: ∆vi/v = v+
i /v −

vi/v = v+
i /v

+ − vi/v = s+
i − si = ∆si.
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C Proofs

C.1 Proof of Proposition 1

We directly verify the strategies. Without loss of generality, we consider the strategy of a buyer, who

might get a zero liquidity shock (z+ = 0) or a nonzero liquidity shock (z+ = Q). We refer the buyer in

these two conditions by “zero buyer” and “nonzero buyer,” respectively.

The first case, Q ≤ ∆

Clearly, under these strategies, a zero buyer does not have any incentive to send an order to any of the

venues and therefore abstains from trading. The nonzero buyer’s cost is

− π+(Q) =
γ

2
E[(Q − VM(Q) − xN(Q) − xL(Q))2] +

δ

2
xN(Q)2 + βxL(Q). (35)

Verify xN(Q). The first order condition with respect to xN(Q) yields

0 = δxN(Q) − γ(Q − E[VM(Q)] − xN(Q) − xL(Q)), (36)

which is easily verified by substituting the conjectured strategies.

Verify xL(Q) = 0. The marginal cost of buying the last unit in DarkNMid is

δxN(Q) = Q
δ(1 − φ)γ
δ + (1 − φ)γ

< β. (37)

So the nonzero buyer has no incentive to deviate to Lit.

Verify xM(Q). Suppose the nonzero buyer chooses some other order size, y, in DarkMid. Note

that xM(Q) = Q − xN(Q). Clearly, the nonzero buyer has no incentive to deviate to y > xM(Q); this

deviation does not change this payoff regardless of the size of the seller. Deviating to y ∈ [0, xM(Q))

is also suboptimal: if the seller is “nonzero,” this deviation reduces matched volume; if the seller is

“zero,” this deviation does not change the payoff.
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The second case, Q > ∆

The optimality of the zero investor’s strategy is verified as before.

In this case, the conjecture is that xL(Q) > 0. This means the first order condition of −π+ with

respect to xN(Q) and xL(Q) must both hold with equality. That is,

δxN(Q) − γ(Q − E[VM(Q)] − xN(Q) − xL(Q)) = 0, (38)

β − γ(Q − E[VM(Q)] − xN(Q) − xL(Q)) = 0. (39)

It is easy to verify that these two first order conditions hold at the conjectured strategies. To verify the

optimality of xM(Q), we note xM(Q) = Q − xN(Q) − xL(Q) and use the same argument as before.

Calculating the equilibrium δ

The last step is to calculate the equilibrium δ, such that the DarkNMid liquidity provider makes zero

expected profit, net of inventory costs. Thus, the expected profit is equal to the expected inventory

cost, i.e.,

φ2δxN(Q)2 + (1−φ)2δxN(0)2 + 2φ(1−φ)
(
δ

2
xN(Q)2 +

δ

2
xN(0)2

)
= 2φ(1−φ) ·

η

2
(xN(Q)− xN(0))2. (40)

From this we solve

δ = η
φ(1 − φ)(xN(Q) − xN(0))2

φxN(Q)2 + (1 − φ)xN(0)2 = η(1 − φ), (41)

where the last equality follows from the equilibrium strategy xN(0) = 0.
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C.2 Proof of Proposition 2

We first calculate the partial derivatives of expected volumes with respect to γ. For each of the venue:

∂v̄M

∂γ
= −

2φ2β

(1 − φ)γ2 < 0

∂v̄N

∂γ
= 0

∂v̄L

∂γ
=

2φβ
(1 − φ)γ2 > 0

and for the total volume:

∂v̄
∂γ

=
2φβ
γ2 > 0.

Recall the definition of the market shares: si := v̄i/v̄ for i ∈ {M,N, L}. Following the above

calculation, we have 1) ∂sM/∂γ < 0 and 2) ∂sN/∂γ < 0, because while the denominator v̄ increases in

γ, the denominators (weakly) decrease. Then, by the accounting identity of sM + sN + sL = 1 (hence

∂(sM + sN + sL)/∂γ = 0), we have 3) ∂sL/∂γ > 0. That is, both dark venue shares reduces and the lit

share grows, as urgency γ increases.

It remains to rank the volume share sensitivity to urgency. Define the sensitivity as the elastic-

ity of market share to urgency:
(
∂si/∂γ

)
/
(
si/γ

)
. This definition matches our empirical approach.

Comparing DarkMid and DarkNMid gives

∂sN

∂γ

γ

sN
−
∂sM

∂γ

γ

sM
=

γ

v̄2

( =0︷  ︸︸  ︷
∂v̄N

∂γ

v̄
sN
−
∂v̄
∂γ

v̄N

sN

)
−
γ

v̄2

(
∂sM

∂γ

v̄
sM
−
∂v̄
∂γ

v̄M

sM

)
=

γ

v̄2

[
∂v̄
∂γ

(
v̄M

sM
−

v̄N

sN

)
︸       ︷︷       ︸

=v̄−v̄=0

−
∂sM

∂γ

v̄
sM

]
> 0.

Hence, the sensitivities of volume shares to urgency can be ranked as stated in proposition 2.

53



References

Berk, Jonathan B. and Jules H. van Binsbergen. 2014. “Measuring Skill in the Mutual Fund Industry.”

Working paper.

Boehmer, Ekkehart, Kingsley Fong, and Juan Wu. 2014. “International Evidence on Algorithmic

Trading.” Manuscript, EDHEC Business School.

Boni, Leslie, David C. Brown, and J. Chris Leach. 2012. “Dark Pool Exclusivity Matters.” Working

paper.

Boulatov, Alex and Thomas J. George. 2013. “Hidden and Displayed Liquidity in Securities Markets

with Informed Liquidity Providers.” Review of Financial Studies 26 (8):2095–2137.

Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. 2014. “High Frequency Trading and

Price Discovery.” Review of Financial Studies, forthcoming .

Brolley, Michael. 2014. “Should Dark Pools Improve Upon Visible Quotes? The Impact of Trade-at

Rules.” Working paper, University of Toronto.

Buti, Sabrina, Barbara Rindi, and Ingrid M. Werner. 2011. “Diving into Dark Pools.” Working paper,

Fisher College of Business, Ohio State University.

———. 2014. “Dark Pool Trading Strategies, Market Quality and Welfare.” Working paper.

Campbell, John Y., Sanford J. Grossman, and Jiang Wang. 1993. “Trading Volume and Serial Corre-

lation in Stocks Returns.” The Quarterly Journal of Economics 108:905–939.

Chowdhry, Bhagwan and Vikram Nanda. 1991. “Multimarket Trading and Market Liquidity.” Review

of Financial Studies 4:483–511.
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